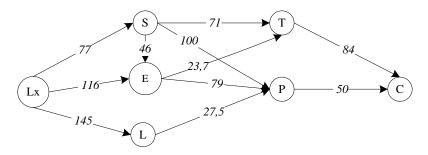
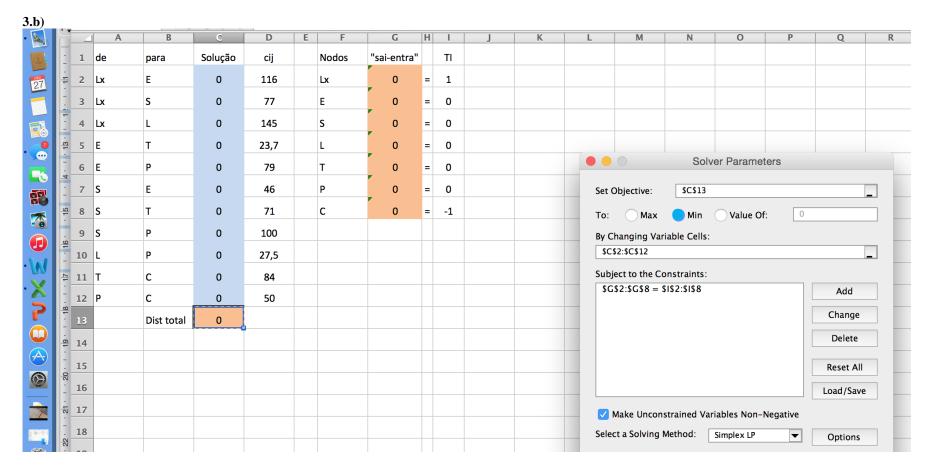
1.

- a) $Z^* = 4 \times 1 + 3 \times 4 = 16$; $x_1 = 1$; $x_3 = 4$; $x_2 = x_4 = 0$; $x_5 = 10 10 = 0$; $x_6 = 14 9 = 5$; $x_7 = 12 12 = 0$; $x_8 = 12 11 = 1$. Diariamente: fabricar 100 pares de sapatos de Tipo 1 e 400 de Tipo 3, a receita máxima é de 16u.m; os rolos de couro são totalmente utilizados ($x_5 = 0$), bem como as h.m. disponíveis na secção de corte e montagem ($x_7 = 0$); sobram 5 rolos de material sintético ($x_6 = 0$) e 1 h.m. na secção de acabamentos ($x_8 = 0$).
- b) Restrições não saturadas têm associadas variáveis desvio positivas: 2ª do material sintético; 4ª da secção de acabamentos.
- c) Enquanto a base ótima se mantiver: $y_1 = 1 a$ receita total aumenta (decresce) 1 u.m. por cada rolo a mais (a menos) de couro; $y_2 = 0 a$ receita total mantém-se perante variações no nº de rolos de mat. Sintético; $y_3 = 0.5$; $y_4 = 0$.
- **d**) $\Delta b_3 = 2 \in [-2, ; 2] \Longrightarrow \Delta Z = y_3. \Delta b_3 = 0.5 \times 2 = 1 \text{u.m. R: ...!}$
- e) $\Delta c_1 = 1 \in [-0.5; 2] \implies \Delta Z = x_1 . \Delta c_1 = 1 \times 1 = 1 \text{u.m. R: ...!}$
- f) Nova variável x_N a que corresponde a nova restrição dual: $y_1 + 0.5y_2 + 2y_3 + y_4 \ge 1.5$. Substituindo os valores da SD: $1 + 0.5 \times 0 + 2 \times 0.5 + 0 = 2 > 1.5$ \Rightarrow Restrição dual não saturada $\Rightarrow x_N = 0$. R: ...!
- g) Variáveis binárias: $y_k = 1$ se fabricar sapatos de Tipo k (k = 1,2,3), $y_k = 0$, c.c.; w = 1 se utilizar couro, w = 0 se utilizar mat. sintético, e assumindo que todos os sapatos são feitos só de couro ou só de material sintético e que as $2 \, 1^{as}$ restrições representam o respetivo consumo; M e M' constantes suficientemente grandes. Alterações ao modelo (1^a e 2^a restrições alteradas e novas restrições):


$$\begin{cases} 2x_1 + x_2 + 2x_3 + x_4 \le 10 + M'(1 - w) \\ x_1 + x_2 + 2x_3 + x_4 \le 14 + M'w \\ x_k \le My_k \quad k = 1,2,3 \\ y_1 + y_3 \le 1 \\ y_1 \le y_2 \\ y_k, w \in \{0,1\} \ k = 1,2,3 \end{cases}$$


2. C.E.: $Min\{-4; -2; -3; -1\} = -4 \rightarrow x_1$

			1						•		
←	VB	Z	x_1	x_2	x_3	x_4	x_5	x_6	T. I.		
	Z	1	-4	-2	-3	-1	0	0	0	C.S.:	Mín.: 12/4=3
	<i>x</i> ₅	0	1	1	2	1	1	0	14	14/1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	$ x_6$	0	4	3	2	1	0	1	12	12/4	
	Z	1	0	1	-1	0	0	1	12		
	<i>x</i> ₅	0	0	1/4	3/2	3/4	1	-1/4	11		
	x_1	0	1	3/4	1/2	1/4	0	1/4	3		

 $\mathbf{x} = (3, 0, 0, 0, 11, 0)$ é SBA não ótima porque um coeficiente na linha de Z é < 0.

3. Seja: Lx- Lisboa; S- Santarém; E – Entroncamento; L – Leiria; T – Tomar; P – Pombal; C – Coimbra. Pretende-se identificar o caminho mais curto (distância mínima) de Lx para C na rede seguinte onde os valores sobre os arcos indicam as distâncias.

Fórmulas: em G2 = SUMIF(\$A\$2:\$A\$12; F2; \$C\$2:\$C\$12) - SUMIF(\$B\$2:\$B\$12; F2; \$C\$2:\$C\$12); esta fórmula pode ser copiada para as células G3, G4, G5, G6, G7 e G8 em C13 = SUMPRODUCT(C2: C12; D2: D12).